The Bifurcation Set for the 1: 4 Resonance Problem
نویسنده
چکیده
We present a three-dimensional model of the bifurcation set that describes the known properties of the system in a condensed way, and, under certain assumptions for which there is strong numerical evidence, is topologically correct and complete. In this model, the bifurcation set consists of surfaces of codimension-one bifurcations that divide (b; '; )-space into fifteen regions of generic phase portraits. The model also offers further insight into the question of versality of the system. All bifurcation phenomena seem to unfold generically for ' 6= =2; 3 =2.
منابع مشابه
Bifurcation in a variational problem on a surface with a constraint
We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.
متن کاملResonance in slow passage problem
The slow passage problem through a resonance is considered. As a model problem, we consider a damped harmonically-forced oscillator whose forcing frequency is slowly ramped linearly in time. The set-up is similar to the familiar slow passage through a Hopf bifurcation problem, where for slow variations of the control parameter, oscillations are delayed until the parameter has exceeded the criti...
متن کاملBifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations
In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملPost-critical Behavior of Three- dimensional Composite Beams Near the Autoparametric Resonance under Flapwise Excitation
The bifurcation analysis of a composite beam subjected to harmonic flapwise base excitation is studied when the ratio of flapwise and chordwise internal resonances is 1:2. Results are obtained by the numerical solution of modulation equations. Chracteristics of the response are investigated in terms of time history, phase portraits diagrams and bifurcation diagram of poincare maps. It is observ...
متن کاملHOPF BIFURCATION CONTROL WITH PD CONTROLLER
In this paper, we investigate the problem of bifurcation control for a delayed logistic growth model. By choosing the timedelay as the bifurcation parameter, we present a Proportional - Derivative (PD) Controller to control Hopf bifurcation. We show that the onset of Hopf bifurcation can be delayed or advanced via a PD Controller by setting proper controlling parameter. Under consideration mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental Mathematics
دوره 3 شماره
صفحات -
تاریخ انتشار 1994